CS-300: Data-Intensive Systems

Logging and Recovery

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pr-L

Today’s focus

e Logging
e Buffer pool policies
e WAL
® Logging schemes
e Recovery
e SN
e Normal checkpoint and abort operations
e Checkpoint

® Recovery algorithm

Until now ...

e Concurrency control protocol provides:

Atomicity + Consistency + Isolation

e We now need to ensure Atomicity + Durability

Motivation

Schedule
T

BEGIN
R(A)
W(A)

COMMIT

(

_

Buffer Pool A

A=1

o

abnd

Motivation

Schedule
T

BEGIN
R(A)
W(A)

COMMIT

(

_

Buffer Pool A

A=1

o

abnd

Motivation

Schedule
T

BEGIN
R(A)
W(A)

COMMIT

(

Buffer Pool A

A=
1

) .

[

g J
’ ;';;I;l'\;];;li;

abnd

Motivation

Schedule
T

BEGIN
R(A)
W(A)

COMMIT

(

Buffer Pool A

A=
1

) .

[

g J
’ ;';;I;l'\;];;li;

abnd

Motivation

Schedule
T

BEGIN
R(A)

W(A—_
COMMIT

(

Buffer Pool A

A=2 T

[

_

o

abnd

Motivation

Schedule
T

BEGIN
R(A)

W(A—_
COMMIT

(

Buffer Pc

\

4\

g J

abnd

Crash recovery

e Recovery algorithms are techniques to ensure database consistency, transaction

atomicity, and durability despite failures

e Recovery algorithms have two parts:
® Actions during normal txn processing to ensure that the DBMS can recover from a
failure - preparing for the failure
® Actions after a failure to recover the database to a state that ensures atomicity,

consistency, and durability - handling the failure

Crash recovery

e Recovery algorithms are techniques to ensure database consistency, transaction

atomicity, and durability despite failures

e Recovery algorithms have two parts:

® Actions during normal txn processing to ensure that the DBMS can recover from a

failure - preparing for the failure

consistency, and durability - handling the failure

Observation

e DB’s primary storage location is on non-volatile storage, but this is slower than

volatile storage
e Use volatile memory for faster access:
® First copy target record into memory
® Perform the write operations in memory

e \Write dirty records back to disk

e The DBMS needs to ensure the following:
® The changes for any txn are durable once the DBMS has committed it

® No partial changes are durable if the txn is aborted

Two key primitives: Undo vs. Redo

Undo: The process of removing the effects of an incomplete or aborted txn
Redo: The process of re-applying the effects of a committed txn for durability

— This functionality depends on how DBMS manages the buffer pool

Buffer pool

Schedule
T T
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
| COMMIT
ROLLBA
CK

(

_

Buffer Pool |

o

Buffer pool
Schedule

T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBA

CK

(

_

Buffer Pool |

o

Buffer pool
Schedule

T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBA

CK

(

Buffer Pool |

A= B=

1 9 | 7™

C=7

Buffer pool
Schedule

T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBA

CK

(

Buffer Pool |

A= B=

c=7
3 9 N

C=7

Buffer pool

Schedule
T

BEGIN
R(A)
W(A)

=)

ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

(

Buffer Pool |

A= B=

c=7
3 9 N

C=7

Buffer pool

Schedule
T

BEGIN
R(A)
W(A)

=)

ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

(

Buffer Pool |

A:‘B:
3 8

C=7 |ed

g J

Buffer pool

Schedule
T

BEGIN
R(A)
W(A)

ROLLBA
CK

BEGIN
R(B)
W(B)

» COMMIT

(

Buffer Pool |

A:‘B:
3 8

C=7 |ed

g J

Buffer pool

Schedule
T

BEGIN
R(A)
W(A)

ROLLBA
CK

BEGIN
R(B)
W(B)

» COMMIT

(

_

Buffer Pool |

A:‘B:
3 8

C=7 N

o

Buffer pool
Schedule

T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBA

CK

(

_

Buffer Pool |

A:‘B:
3 8

C=7 N

o

Steal policy

e A DBMS can evict dirty objects in the buffer pool modified by an uncommitted txn
e DBMS then overwrite the most recent committed version of that object in non-
volatile storage

—> Buffer manager steals the page from the uncommitted transaction

Steal: Eviction + overwriting is allowed
No-steal: Eviction + overwriting is not allowed

e Only committed data is written to non-volatile storage

Force policy

e Dictates whether a DBMS requires all updates made by a txn are written back to non-

volatile storage before a txn can commit

Force: Write-back is required

No-force: Write-back is not required

10

No-steal + force

Schedule
T T
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
| COMMIT
ROLLBA
CK

4)
Buffer Pool

g J

C=7

11

No-steal + force

Schedule
T T
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
| COMMIT
ROLLBA
CK

4)
Buffer Pool

g J

C=7

11

No-steal + force

Schedule
T T
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
| COMMIT
ROLLBA
CK

4)
Buffer Pool

A=
1

B=
9

C=7

Y

C=7

11

No-steal + force

4)
Buffer Pool

Schedule
T T
BEGIN
R(A)
W(A)—
BEGHN-_
R(B)
W(B)
| COMMIT
ROLLBA
CK

/2

A= B=
3 | 9 | &7

C=7

11

No-steal + fo

Schedule
T

rce

BEGIN

R(A)
=)

W(A)
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

4)
Buffer Pool

A= B=
3 | o | &7

g J

C=7

11

No-steal + force

Schedule
T

BEGIN
R(A)
W(A)

=

ROLLBA
CK

BEGIN
R(B)

W(B)}——
COMMIT

4)
Buffer Pool

_

A= B=
3 8

C=7 |

C=7

11

No-steal + force

Schedule
T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

~
FORCE means that T,
changes must be written

4)
Buffer Pool

A= B=
3 8 c=7 A

to disk at this point.

C=7

11

No-steal + force

Schedule
T T 3
BEGIN NO-STEAL means that T, changes
R(A) cannot be written to disk yet.
W(A) —
BEGIN . '
W(B) : A= B=
COMMIT g 1 | e | &7
~
FORCE means that T,
. \ y,
changes must be written
to disk at this point. m

No-steal + force

Schedule
T T 3
BEGIN NO-STEAL means that T, changes
R(A) cannot be written to disk yet.
W(A) —
BEGIN . '
WiE) s | T
COMMIT ¥ co =15 e
A= B= A
1 | 8 | <
~
FORCE means that T,
. - V,
changes must be written
to disk at this point. m

No-steal + force

Schedule
T T

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)

COMMIT

~
FORCE means that T,
changes must be written

¥
A= B= VY
1 3 Cc=7

NO-STEAL means that T, changes

|

to disk at this point.

cannot be written to disk yet.
—

C=7

11

No-steal + force
Schedule

T T
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
| COMMIT
ROLLBA
C
Now it’s trivial
to rollback T,

4)
Buffer Pool

A= B=
3 8

C=7

C=7

11

No-steal + force

This approach easiest to implement:
e Never have to undo changes of an aborted txn because the changes were not written

to disk
e Never have to redo changes of a committed txn because all the changes are

guaranteed to be written to disk at committee commit time

Issues with no-steal + force?

12

No-steal + force

This approach easiest to implement:
e Never have to undo changes of an aborted txn because the changes were not written

to disk
e Never have to redo changes of a committed txn because all the changes are

guaranteed to be written to disk at committee commit time

Issues with no-steal + force?
e High memory pressure: requires all pages to be buffered in memory until commit

e Slow commit: Force flushes all dirty pages at commit time, increasing latency

e |nefficient for concurrent updates: excessive I/0O per commit for multiple txns

13

Write-ahead log (WAL)

e Maintains a log file separate from data files that contains the changes that txns make

to database
® Assume that the log is on stable storage

e Log contains necessary information to perform undo and redo actions to restore DB

e DBMS must write to disk the log file records that correspond to changes made to a

database object before it can flush that object to disk

Buffer pool policy: Steal + No-force

14

Buffer pool + WAL

Steal
No Yes

No

Force

Yes

15

Buffer pool + WAL

Steal
No Yes

No

Force

Yes

Trivial

Buffer pool + WAL

Force

Yes

No

Steal

No

Yes

Desired

Trivial

15

Buffer pool + WAL

Force

Yes

No

Steal

No

Yes

Desired

Trivial

4

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

15

Buffer pool + WAL

Steal

No

Yes

No

Desired

Force

Yes

4

V4

No-Steal

Low throughput,
but works for
aborted txns

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

15

Buffer pool + WAL

Steal

No

Yes

Desired

4

Force

Yes

4

<

No-Steal

Low throughput,
but works for
aborted txns

No-Force
Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to redo.

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

15

Buffer pool + WAL

Steal
No Yes

No-Force
> Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to redo.

Force

> Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

NV

No-Steal Steal (flush an unpinned dirty page even if the updating txn is active)

Low throughput, Concern: A stolen+flushed page was modified by an uncommitted txn. T.
but works for If T aborts, how is atomicity enforced?
aborted txns Solution: Remember old value (logs). Use to undo.

15

WAL protocol

e The DBMS keeps a dedicated region for txn’s log records in volatile storage (usually
backed by buffer pool)

e First write the log records wrt an updated page and then page itself in non-volatile
storage

e A txnis not considered committed until all its log records have been written to stable
storage

16

WAL protocol

Write a <BEGIN> record to the log for each txn to mark its starting point

e Append arecord every time a txn changes an object:
® Transaction ID
e ObjectID
e Before value (undo)

e After value (redo)
e When a txn finishes, the DBMS appends a <COMMIT> record to the log

e Make sure that all log records are flushed before it returns an acknowledgement to
application

17

WAL example

Schedule
T

BEGIN
W(A)
W(B)

COMMIT

" WAL Buffer

Buffer Pool

A= B=
1 5

C=7

18

WAL example

Schedule

T

BEGIN
W(A)
W(B)

COMMIT

WAL Buffer

<T, BEGIN>
<T,, A, 1, 8>

4

Buffer Pool

A=
1

B=
5

C=7

18

WAL example

Schedule

T

BEGIN
W(A)
W(B)

COMMIT

WAL Buffer

<T, BEGIN>
<T,, A, 1, 8>

4

Buffer Pool

A=
1

B=
5

C=7

18

WAL example

Schedule
T

BEGIN
W(A)
W(B)

COMMIT

WAL Buffer

<T, BEGIN>
<T, A1, 8>‘

Befo Afte

re r

Buffer Pool

A= B=
1 5

C=7

18

WAL example

Schedule
T

BEGIN
W(A)
W(B)

COMMIT

WAL Buffer

<T, BEGIN>
<T, A1, 8>‘

Befo Afte

re r

A=8 B= C=7

o

Buffer Pool

18

WAL example

Schedule

T

BEGIN
W(A)
W(B)

COMMIT

WAL Buffer

<T, BEGIN>
<T,A1,8>
<T,,B, 5, 9>
<T, COMMIT>

4

Buffer Pool

A=8

B=
5

C=7

19

WAL example

Schedule
T " WAL Buffer)
BEGIN
W(A) <T, BEGIN>
W(B) <T,A,1,8>
: <T1! B, 5! 9>
<T, COMMIT>
COMMIT :
4
- Y,
Buffer Pool
a=g | B [c=7
9
_ y,

WAL example

Schedule
T (WAL BUffer h <T, BEGIN>

<T,A1,8>

BEGIN : <T,, B, 5,9>
W(A) <T1 BEGIN> : <T, COMMIT>
W(B) <T, A, 1,8>

<T,,B,5,9> [

<T, COMMIT>

COMMIT i —
7 1 5 C=7 I
- J
Buffer Pool
as | B [ce7
9
- Y

19

WAL example

Schedule

T

BEGIN
W(A)
W(B)

Txn result is now safe to
return to application.

|

WAL Buffer

<T, BEGIN>
<T,,A,1,8>
<T,,B,5,9> []
<T, COMMIT>

4

Buffer Pool

A=8 C=7

<T, BEGIN>
<T,A,1,8>

: <T,, B, 5,9>
/ <T, COMMIT>

C=7

19

WAL example

Schedule
! " WALBuffer | | [aeem
BEGIN § i
W(A) <T, BEGIN> 3 <T, COMMIT>
W(B) <T,, A1, 8> g
| <1, B,59 [°
<T, COMMIT> g
COMMIT E 3 —
4 : 1 | 5 | &7
- y, 3
Buffer Pool
ass | B [=7
| o |
. Y,

WAL example

Schedule
T

BEGIN
W(A)
W(B)

COMMIT

" WAL Buffer

~

/

<T, BEGIN>
<T,A,1,8>
<T,, B, 5, 9>
<T, COMMIT>

C=7

19

WAL example Everything we need to
Schedule restore T, is in the log!

T WAL Buffer e
WA T,
W(A) n
W(B)

COMMIT | —
1 5 | &7
- Y,
4 I ~\
. Y,

19

WAL implementation

e Flushing the log buffer to disk every time a txn commits becomes a bottleneck

e The DBMS can use the group commit optimization to batch multiple log flushes
together to amortize overhead
e \When the buffer is full, flush it to disk

e Or if thereis atimeout (e.g., 5 ms)

20

Buffer pool policies

e Almost every DBMS uses No-force + steal

Runtime Performance Recovery Performance
__________ - o QLI gl
NO-FORCE — Fastest NO-FORCE - Slowest

Buffer pool policies

e Almost every DBMS uses No-force + steal

Runtime Performance Recovery P
_ ---------- =~ — — = — | Undo + Redo
NO-FORCE — Fastest NO-FORCE - Slowest

Buffer pool policies

e Almost every DBMS uses No-force + steal

Runtime Performance Recovery P
_ ---------- =~ — — = — | Undo + Redo
NO-FORCE — Fastest NO-FORCE - Slowest

FORCE| Fastest -

___No Undo +Na—
——————————— 7 Redo P ——— - -

Logging schemes

Physical logging
e Record the byte-level changes made to a specific page (e.g., git diff)
Logical logging
e Record the high-level operations executed by txns
e Example: update, delete, and insert queries
Physiological logging
e Physical-to-a-page, logical-within-a-page
e Hybrid: Byte-level changes for a single tuple identified by page ID + slot number
e Does not specify page organization

22

Physical vs. logical logging

e Logical logging requires less data written in each log record than physical logging

e Difficult to implement recovery with logical logging if concurrent txns running at lower
isolation levels
e Difficult to determine which parts of the database may have been modified by a query
before crash

® Recovery takes longer because DBMS re-executes every query in the log again

23

Summary: logging

e WAL is almost always the best approach to handle loss of volatile storage
e Use incremental updates (steal + no-force) with checkpoints

e Onrecovery: undo uncommitted txns + redo committed txns

24

Crash recovery

e Recovery algorithms are techniques to ensure database consistency, transaction

atomicity, and durability despite failures

e Recovery algorithms have two parts:
® Actions during normal txn processing to ensure that the DBMS can recover from a

failure - preparing for the failure

® Actions after a failure to recover the database to a state that ensures atomicity,

consistency, and durability - handling the failure

25

ARIES

Algorithms for Recovery and

Isolation Exploitation Semantics

e Developed at IBM Research in early
1990s for the DB2 DBMS

e Not all systems implement ARIES exactly
as defined in this paper but they
follow it closely & canonical representation

of today’s DB recovery protocol

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARIES (Algorithm for Recovery
and Isolation Exploiting Si ics), which supports partial rollbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before performing the rollbacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks. By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, selective and deferred restart, fuzzy image copies, media recovery, and high
concurrency lock modes (e.g., increment/decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, page-oriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL. We compare ARIES to the WAL-based recovery methods of

Authors’ addresses: C Mohan, Data Base Technology Institute, IBM Almaden Research Center,
San Jose, CA 95120; D. Haderle, Data Base Technology Institute, IBM Santa Teresa Labora-
tory, San Jose, CA 95150; B. Lindsay, H. Pirahesh, and P. Schwarz, IBM Almaden Research
Center, San Jose, CA 95120.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1992 0362-5915/92/0300-0094 $1.50

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992, Pages 94-162

26

https://dl.acm.org/citation.cfm?id=128770

ARIES: main ideas

Write-ahead logging:
e Flush WAL record(s) changes to disk before a database object is written to disk

e Must use Steal + No-force buffer pool policies

Repeating history during redo:

e On DBMS restart, retrace actions and restore DB to exact state before crash

Logging changes during undo:
e Record undo actions to log to ensure action is not repeated in the event of

repeated failures

27

Today’s focus

e Recovery
e SN
e Normal checkpoint and abort operations
e Checkpoint

® Recovery algorithm

28

WAL records

e Need to extend log record format to include additional info:

e Every log record includes a globally unigue log sequence number (LSN)

® LSNs represent the physical order that txns make changes to the DB

e Various components in the system keep track of LSNs that pertain to them ...

29

Name Location

Log sequence numbers (LSNs)

Definition

flushedLSN Memory
pagelLSN page,
recLSN DPTT

lastLSN ATT*
MasterRecord Disk

t DPT = Dirty Page Table

Last LSN in log on disk
Newest update to page,

Oldest update to page,
since it was last flushed

Latest record of txn T,
LSN of latest checkpoint

* ATT = Active Transaction Table

30

WAL bookkeeping

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
—>The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
— the max LSN flushed so far

WAL: Before a page, is written, pageLSN, <=
flushedLSN

WAL

WAL

Disk

31

WAL bookkeeping

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
—>The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
— the max LSN flushed so far

WAL: Before a page, is written, pageLSN, <=
flushedLSN

WAL

S

pageLSNs

WAL

Disk

31

WAL bookkeeping

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
—>The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
— the max LSN flushed so far

WAL: Before a page, is written, pageLSN, <=
flushedLSN

WAL

pageLSNs

[

\

pagelLSN

pagelLSN

Data
Page

Data
Page

WAL

Disk

31

WAL bookkeeping

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
—>The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
— the max LSN flushed so far

WAL: Before a page, is written, pageLSN, <=
flushedLSN

WAL

pageLSNs

[

\

pagelLSN

pagelLSN

Data
Page

Datx\

Page

WAL

Disk

31

WAL bookkeeping

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
—>The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
— the max LSN flushed so far

WAL: Before a page, is written, pageLSN, <=
flushedLSN

WAL

pageLSNs

[

\

pagelLSN

pagelLSN

Data
Page

Datx\

Page

JusEeELSN

7

WAL

Disk

\

31

WAL bookkeeping

LSN: Unique and monotonically increasing WAL

Each data page contains a pageLSN

pageLSNs

[

\

pagelLSN

pagelLSN

—>The LSN of the most recent log record that
updated the page

Data
Page

Systems keep track ofjlushed.lsN_
— the max LSN flushed.sa far —_

Datx\

Page

JusEeELSN

7

WAL

WAL: Before a page, is written, pageLSN, <=
flushedLSN

Disk

\

31

Writing log records

‘ ! WAL l
4 . ™
! WAL (Tail) o |
B 001:<T, BEGIN
| || 017:<T-. BEGIN> : | L !
P I I 003:<T, COMMIT> I
| | | 318:<Ts: A, 9, 8> | | e |
|| oagiar® e | | e ||
. I . I
¢ | 020'<T5 COMMIT> I : (>)08:<TZCOMMIT> :
: 009:<T;, A, 3, 4>
' 7 R
: - Jo 012:<T, Y, 9, 7> I
- 013:<T, B, 4, 2>
[Buffer Pool : I | otai<tycommiTsf7” :
___________ I :
o B [N e I : ,
: | A=9 | B=5 | c=2 I
I A=9 | B=5 | c=2 1
"""""""""" I“‘"""'""""""""—I—" I
| | i MasterRecord I
lushedLSN
' flushe | Database I
- y, I

Writing log records

-— == Log Sequence Numbers]"
Log Sequence Numbers I—\ : w :
1> .
l Ay I 001}<T, BEGIN> I
002}<T,, A, 1, 2>
: 017}<T; BEGIN> I I <T, COMMIT> I
004}<T, BEGIN>
| 018<T;, A, 9, 8> | | 005<T> A 2, 35 |
006§<T. BEGIN>
I 01 <T5! B, 5, 1> : ' 007}<CHECKPOINT :
>
| [to20:<T; commiT> ! L s, comm !
C I . | 009Y<T,, A, 3, 4>
7 e |
I J e 0124<T, Y, 9, 7> I
| - i | 013}<T,, B, 4, 2> |
| Buffer Pool : : - [grmi<T, commiT> ,
| pagetsN] | | | | - I
I I i A=9 | B=5 | c=2 I
: A=9 | B=5 | c=2 . S :
| — | : MasterRecord I
I . flushedLSN B : Database :
|

Writing log records

e === === y o mm o mm m— mm = = = == -~l
4 : ™ ' WAL
! WAL (Tail) 0 |
T 001:<T, BEGIN
| | | 017:<T. BEGIN> : | L e l
I P I I 003:<T, COMMIT> I
o & S ' |y .
|| dasr® o | | e |
. I . I
¢ | 020'<T5 COMMIT> I : (>)08:<TZCOMMIT> :
: 009:<T;, A, 3, 4>
' 7 |
: \ J L T 012:<T,, Y, 9, 7> I
e 013:<T.. B, 4, 2>
[Buffer Pool | U | st Commnsy” |
___________ | ! ' I
A o e | ! ‘ :
: | A=9 | B=5 | C=2 I
I A=9 | B=5 | C=2 1
----------- I““"‘"""'“"""""Iﬂ' I
| | i MasterRecord I
lushedLSN
' flushe | Database I
- y, I

Writing log records

‘ ! WAL l
4 . ™
! WAL (Tail) o |
B 001:<T, BEGIN
| || 017:<T-. BEGIN> : | L !
P I I 003:<T, COMMIT> I
| | | 318:<Ts: A, 9, 8> | | e |
|| oagiar® e | | e ||
. I . I
¢ | 020'<T5 COMMIT> I : (>)08:<TZCOMMIT> :
: 009:<T;, A, 3, 4>
' 7 R
: - Jo 012:<T, Y, 9, 7> I
- 013:<T, B, 4, 2>
[Buffer Pool : I | otai<tycommiTsf7” :
___________ I :
o B [N e I : ,
: | A=9 | B=5 | c=2 I
I A=9 | B=5 | c=2 1
"""""""""" I“‘"""'""""""""—I—" I
| | i MasterRecord I
lushedLSN
' flushe | Database I
- y, I

Writing log records

—_— N WAL
WAL (Tail) N |
l T I 001:<T, BEGIN> I
i | [017:<T, BEGIN> . | |mmane |
| | 018:<T, A, 9, 8> | || smeEa |
. 006:<T; BEGIN>
I 019:<Ts, B, 5, 1> : : 007:<CHECKPOINT :
n >

| 020'<T5 COMMIT> I 008:<T, COMMIT>

(: : | I 009:<T,, A, 3, 4> I
010:<T, BEGIN>
I 7 I ' 011:<T,, X, 5, 6> ,
G J | I 012:<T,, Y, 9, 7> I
I~ i e 013:<T,, B, 4, 2> I
i Buffer Pool : | 014:<T; COMMIT>Z; :
! waersd] | v/ | |
| = I A=9 | B=5 | C=2 I
: ___________________________________ o MasterRecord I
I I asterRecor I
- lushedLSN }——
! flushe l Database l
o\ y l

Writing log records

—_— N WAL
WAL (Tail) 0 |
| T : 001:<T, BEGIN> I
| | | 017:<T, BEGIN> : : 003:<T! COMMIT> !
| | | 318:<Ts: A, 9, 8> | | e |
- 006:<T; BEGIN> gemmjemm
| 019'<T5’ B, 5, 1> : I 007:<CHECKPOINT :
n >

| 020'<T5 COMMIT> I 008:<T, COMMIT>
(: : | I 009:<T,, A, 3, 4> I

010:<T, BEGIN>
I 7 I ' 011:<T,, X, 5, 6> ,
G J | I 012:<T,, Y, 9, 7> I
I~ i e 013:<T,, B, 4, 2> I
i Buffer Pool : | 014:<T; COMMIT>Z; :
I e e . Y | |
I A=9 | B=5 | c=2 l A9 | B=5 | =2 I

| - - =1 v, /S T
|V : MasterRecord I
I asternecor — I
lushedLSN }—— !

: L flushe) : Database !

Writing log records

! ! WAL '
4 .)

! WAL (Tail) ! L !
l Ay I 001:<T, BEGIN> I
| | | 017:<T, BEGIN> : : 003:<T! COMMIT> !
' | |018:<T;, A, 9, 8> | | e |

. 006:<T, BEGIN>
I 019:<Ts, B, 5, 1> : : 007:<CHECKPOINT :

n >

: I 020:<T; COMMIT> |] : 008:<T, COMMIT> :

: 009:<T., A, 3, 4>
| 7| i » 010:<T, BEGIN> I

I . 011:<T,, X, 5, 6>
_ I I 012:<T,, Y, 9, 7> I
| N | T 013:<T,, B, 4, 2> I
I Bu r POOI : || 014:<T, c0MM|T>[7 :
: e e . Y A | |
| A=9 | B=5 | C=2 I

I A=9 | B=5 | C=2 1

-------------------------- 1 l

| MasterRecord
| | I

lushedLSN }——

: L Slushe) | Database l

Writing log records

' —_— — _— — _— — _— — [r— -_—

=

S R 001:<T, BEGIN>
002:<T,, A, 1, 2>
003:<T, COMMIT>
004:<T, BEGIN>
005:<T,, A, 2, 3>
006:<T, BEGIN>
007:<CHECKPOINT
>

008:<T, COMMIT>
009:<T5, A, 3, 4>
» 010:<T, BEGIN>

011:<T,, X, 5, 6>

012:<T,, Y, 9, 7>
h T 013:<T,, B, 4, 2>
Bu r POOI “--.__| 014:<T, COMMIT>

————————————————————————— agelLSN
pageSh
A I I A=9 B=5 C=2

(WAL (Tail)

017:<T, BEGIN>
018:<T;, A, 9, 8>
019:<T,, B, 5, 1>
020:<T, COMMIT>

1
1
1
1
1
1
1
1
1
1
1
1
- — — —_— _— —_— _— []

L Safe to evict because | - :

MasterRecord

pagelSN < flushedLSN : e

(

Writing log records

~
J

S
~

WAL (Tail)

017:<T; BEGIN>
018:<T;, A, 9, 8>
011:<T,, X, 5, 6>

|
l B
| |
' |
—r019:<T1,, B, 5, 1> |
E 020:<T, COMMIT> !
¢ :
G 7) I 012:<T,, Y, 9, 7>
7 N |
I
]

e 001:<T, BEGIN>

002:<T,, A, 1, 2>
003:<T, COMMIT>
004:<T, BEGIN>
005:<T,, A, 2, 3>
006:<T, BEGIN>
007:<CHECKPOINT
>

008:<T, COMMIT>
009:<T,, A, 3, 4>
010:<T, BEGIN>

1
1
1
— —— _— —_— _— —_— _— —_—
1
1

Buffer Pool = 014t COMMIT> 7

pagesty) | |V /0 I
|

A=9 B=5 c=2

A=9 B=5 C=2

MasterRecord

Database

flushedLSN e I

Writing log records

| ! WAL '
r . A
| WAL (Tail) 0 |
l Ay I 001:<T, BEGIN> I
I || 017:<T; BEGIN> ! : 003:<T, CONMIT> !
1 || 018:<T, A, 9, 8> | | mepee |
—p . :
[| [019:<T5, B, 5, 1> | ! 007.<CHECKPOINT |
| 020:<T5 COMMIT> I 008:<T, COMMIT>
alr] 7| R '
' s ! :<T, BEGIN> !
AN Jo 012:<T, Y, 0, 75 !
I~ N | el 013:<T,, B, 4, 2> I
I Buffer POOI : | || 014:<T, c0MM|T>[7 :
I [pagetsny] | | | B A | I
l 1= I | I I A=9 | B=5 | c=2 I
O . I T
[Not safe to evict because 'I l — :
|
_ pagelSN > flushedLSN J | Database :

Writing LOG records

e Alllog records have an LSN
e Update the pagelLSN every time a txn modifies a record in the page

e Update the flushedLSN in memory every time the DBMS writes the WAL buffer to
disk

33

Normal execution

e Each txn invokes a sequence of reads and writes, followed by a commit or rollback

e Assumptions made right now:
e Alllog records fit within a single page
e Disk writes are atomic
e Single-versions tuples with Strong Strict 2PL

e Steal + No-force buffer management with WAL

34

Transaction commit

e When a txn commits, the DBMS writes a COMMIT record to a log and guarantees all
log records up to txn’s COMMIT record are flushed to disk
e Log flushes are sequential, synchronous writes to disk

e Many log records per log page

e When the commit succeeds, write a TXN-END record to log
e Indicates that no new log record for a txn will appear in the log ever again

® This does not need to be flushed immediately

35

Transaction commit

P e e —\ o e ————— —
l
> : N | WAL
| WAL (Tail) l e !
p T I 001:<T, BEGIN> I
. 002:<T,, A, 1, 2>
: 012:<T, BEGIN> I I 003:<T, COMMIT> I
| | oreer® B o o ! BE e |
- I 006:<T, BEGIN>
| 014"<T4’ B, 5, 1> I I 007:<CHECKPOINT :
. >
| 015-<T4 COMMIT> i | 008:<T, COMMIT>
(I : l 009:<T,, A, 3, 4> I
|) - I 010:<T,, B, 4, 2> |
099:<T. TXN-END> ﬂ el 011:<T,, COMMIT>
_ § J | e 012:<T, BEGIN> I
I N | e 013:<T,, A, 9, 8> I
| Buffer Pool | o [oease 7
I ___
| [pagelsN] | i | |
| I A=9 | B=5 | c=2 I
| A=9 B=5 C=2 | RN I
------------------------------ I
| AushedLsn I ! MasterRecord i
ushe
: L) | Database |

Transaction commit

/= ——— — \ o—— m— = = = = == —
1
> , N | WAL
| WAL (Tail) ! 0 .
B I 001:<T, BEGIN> |
I | | 012:<T, BEGIN> ! : 003:<T! COMMIT> !
I . 004:<T, BEGIN>
, 013:<T,, A, 9, 8> : I 005:<T,, A, 2, 3> |
; 006:<T, BEGIN>
‘014'<T4’ B, 5, 1> : ' 007:<CHECKPOINT :
. >
(| 015-<T4 COMMIT> i : 008:<T, COMMIT> :
: 009:<T,, A, 3, 4>
:) - I 010:<T2, B, 4, 2> |
099:<T TXN-END> ﬂ el 011:<T,, COMMIT>
: _ § J | e 012:<T, BEGIN> I
- N | 013:<T,, A, 9, 8>
| Buffer Pool ! o[RSt g
I ___
| [pagelsN] | i | |
| I A=9 | B=5 | c=2 I
| A=9 B=5 C=2 | RN I
------------------------------ I
| AushedLsn I ! MasterRecord i
ushe
: L) | Database |

Transaction commit

/= ——— — \ o—— m— = = = = == —
l
> : N | WAL
| WAL (Tail) l e .
: S l 002.<T A 1,25 |
: 012:<T, BEGIN> I I 003:<T, COMMIT> |
. 004:<T, BEGIN>
I 01 3.<T4, A, 9, 8> : I 005:<T§, A’ 2, 3> I
. 006:<T, BEGIN>
‘014'<T4’ B, 5, 1> : I 007:<CHECKPOINT :
. I >
| 015-<T4 COMMIT> i | 008:<T, COMMIT>
C : I } | 009:<T;, A, 3, 4> I
. 1 010:<T,, B, 4, 2> |
I 099:<T. TXN-END> ﬂ el ' 011:<T,, COMMIT>
: _ § J | e 012:<T, BEGIN> I
- N | 013:<T,, A, 9, 8>
. Buffer Pool ! o [mEei g
I ___
| [pagelsN] | I | l
| A=9 | B=5 | C=2 I
I A=9 | B=5 | C=2 ___| __________
N o b I I
AushedLsN | I MasterRecord I
I us
L L) I Database |

Transaction commit

D e \ L —
1
| - N | WAL
| WAL (Tail) ! N |
R : 001:<T, BEGIN> I
. 002:<T,, A, 1, 2>
: 012:<T, BEGIN> I I 003:<T, COMMIT> I
. 004:<T, BEGIN>
I 01 3.<T4, A! 9! 8> : I 005:<T§, A, 2, 3> I
. 006:<T, BEGIN>
‘014'<T4’ B, 5, 1> : ' 007:<CHECKPOINT :
. I >
| 015-<T4 COMMIT> i | 008:<T, COMMIT>
C : : } | 009:<T;, A, 3, 4> I
: ™ 010:<T,, B, 4, 2>
I —0—9—9—<:|-1—T—X-N—EN-D>—7 R | 011:<T,, COMMIT> |
_ J | e L 012:<T, BEGIN> I
I N | 013:<T,, A, 9, 8> I
I Buffer Pool , .| 014:<T,,B,5,1> fz :
: i e DL A A T |
| A=9 | B=5 | c=2 I
I A=9 B=5 <2, r 1 . S v
------------------------------------ I
I MasterRecord
l flushedlsN ——1 | ! '
| U) | Database |
—— / N o o e e e e - - —— /

flushedLSN = 015 |~

Transaction commit

e — T r WAL !
| :)
| WAL (Tail) - L !
B B i 001:<T, BEGIN> I
. 002:<T,, A, 1, 2>
: 012:<T, BEGIN> l I 003:<T, COMMIT> l
. 004:<T, BEGIN>
I 01 3-<T4, A, 9, 8> : I 005:<T§, A’ 2, 3> I
. 006:<T, BEGIN>
l 81:<$4,CB(,)I?II,I\7II>T I : 007:<CHECKPOINT :
l <Iy > 008:<T, COMMIT>
< s 1 s '
MN_EM : 011:<T,. COMMIT> '
J I L 012:<T, BEGIN> I
| - N | 013:<T,, A, 9, 8> I
! Buffer Pool | o [oeris s 7 |
I _pageLSN —————————————————————————————————————— I
: A=9 | B=5 | c=2 A=9 | B=5 | =2 I
--- I
I MasterRecord
l flushedLSN ——1 ! ' :
L U) I Database |

Transaction commit

S
r~

------------------- 001:<T, BEGIN>
002:<T,, A, 1, 2>
003:<T, COMMIT>
004:<T, BEGIN>
005:<T,, A, 2, 3>
006:<T, BEGIN>
007:<CHECKPOINT
>

008:<T, COMMIT>
009:<T,, A, 3, 4>
010:<T,, B, 4, 2>
011:<T,, COMMIT>
,, 012:<T, BEGIN>

T 013:<T, A, 9, 8>
| 014:<T,, B, 5,1> ZZ

A=9 B=5 C=2

—

1
— —— _— —_— _— —_— _— —_—

Buffer Pool

A=9 B=5 C=2

1
1
1
—_— _— [l] — — — _— —_—
1
1
1
1

flushedLSN I ! Database

MasterRecord

Transaction abort

e Aborting a txn is a special case of the ARIES undo operation applied to only one txn

e Need to add another field to log records:
® prevLSN: The previous LSN for the txn

® This maintains a linked-list for each txn that makes it easy to walk through its records

37

Compensation log records (CLR)

Ensures that undo actions during recovery are logged and redoable

® Prevents the same undo if a crash happens again

A CLR describes the actions taken to undo the actions of a previous update record

It has all the fields of an updated log record plus the undoNextLSN pointer (i.e, the
next-to-be-undone LSN)

CLRs are added to log records but the DBMS does not wait for them to be flushed
before notifying the application that the txn aborted

38

Abort algorithm

e First write an ABORT record to log for the txn
e Then analyze the txn’s updates in reverse order
e For each updated record:

e \Write a CLR entry to the log

® Restore old value

e Lastly, write a TXN-END record and release locks

Note: CLRs never need to be undone

39

Today’s focus

e Llogging
e Buffer pool policies
o WAL
® Logging schemes

e Recovery

e Checkpoint

® Recovery algorithm

40

Checkpoints

WAL can grow infinite - need an approach to have faster recovery
e DBMS checkpoints WAL to truncate it
e Works by halting everything when DBMS takes a checkpoint to ensure a consistent
snapshot:
e Halt the start of any new txns
e Wait until all active txns finish executing

® Flushes dirty pages on disk

e Also known as non-fuzzy checkpoint

e Bad for runtime performance but makes recovery easy

41

Slightly better checkpoints

Pause modifying txns while the DBMS takes the checkpoint
e Flushes dirty pages on disk

e Prevent queries from acquiring write latch on table/index pages
e Don’t have to wait until all txns finish before taking the checkpoint

Record internal state as of the beginning of the checkpoint to handle partial updates

Active Transaction Table (ATT)
e Dirty Page Table (DPT)

42

Active transaction table (ATT)

One entry per currently active txn

e txnlID: Unique txn identifier

e status: The current “mode” of the txn

e lastLSN: Most recent LSN created by the txn

Txn status codes:

e Running (R)

e Committing (C)

e Candidate for undo (U)

43

Dirty page table (DPT)

e Keep track of which pages in the buffer pool contain changes that have not been
flushed to disk

e One entry per dirty page in the buffer pool
® recLSN: The LSN of the log record that first caused the page to be dirty

44

Slightly better checkpoints

At the first checkpoint, assuming P, was flushed, T,
is still running and there is only one dirty page (P,,)

At the second checkpoint, assuming P,, was flushed,

T, and T, are active and the dirty pages are (P,,, P3;)

This still is not ideal because the DBMS must stall
txns during checkpoint ...

001:<T, BEGIN>
002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
007:<CHECKPOINT
ATT=(T,},
72IDPT={P,,}>

008:<T, BEGIN>

009:<T,, A—P,,, 120, 130>
010:<T, COMMIT>
011:<T,, BoP,,, 200, 400>
012:<CHECKPOINT
ATT={T,,T.},
ZIDPT={P,,,P5,}>

45

Slightly better checkpoints

001:<T, BEGIN>

At the first checkpoint, assuming P, was flushed, T, 832:? I?AEG}!,N> 100. 120>
. 19 AN 41 y

is still running and there is only one dirty page (P,,) 004:<T, COMMIT>

005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
CHECKPOINT
ATT={T,},
?|DPT={P,,}>

o . 008:<T, BEGIN>
This still is not ideal because the DBMS must stall 009:<T,, A—P,,, 120, 130>

txns during checkpoint ... 010:<T, COMMIT>

011:<T,, B>P,,, 200, 400>
012:<CHECKPOINT
ATT={T,,T,},
2IDPT={P,,,P;,}>

K : . : . /45

At the second checkpoint, assuming P,, was flushed,
T, and T, are active and the dirty pages are (P,,, P3;)

Slightly better checkpoints

At the first checkpoint, assuming P, was flushed, T,
is still running and there is only one dirty page (P,,)

At the second checkpoint, assuming P,, was flushed,

T, and T, are active and the dirty pages are (P,,, P3;)

This still is not ideal because the DBMS must stall
txns during checkpoint ...

001:<T, BEGIN>
002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
007:<CHECKPOINT
ATT=(T,},
72IDPT={P,,}>
008:<T, BEGIN>
009:<T,, A—P,,, 120, 130>
010:<T, COMMIT>
011:<T,, BoP,,, 200, 400>
012:<CHECKPOINT
ATT={T,,T.},
ZIDPT={P,,,P5,}>

45

Slightly better checkpoints

At the first checkpoint, assuming P, was flushed, T,
is still running and there is only one dirty page (P,,)

At the second checkpoint, assuming P,, was flushed,

T, and T, are active and the dirty pages are (P,,, P3;)

This still is not ideal because the DBMS must stall
txns during checkpoint ...

001:<T, BEGIN>
002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
007:<CHECKPOINT
ATT=(T,},
72IDPT={P,,}>

008:<T, BEGIN>

009:<T,, A—P,,, 120, 130>
010:<T, COMMIT>
011:<T,, BoP,,, 200, 400>
012:<CHECKPOINT
ATT={T,,T.},
ZIDPT={P,,,P5,}>

45

Slightly better checkpoints

At the first checkpoint, assuming P, was flushed, T,
is still running and there is only one dirty page (P,,)

At the second checkpoint, assuming P,, was flushed,

T, and T, are active and the dirty pages are (P,,, P3;)

This still is not ideal because the DBMS must stall
txns during checkpoint ...

\

001:<T, BEGIN>

002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
007:<CHECKPOINT

?

?JATT={T,},

DPT={P,,}>

008:<T, BEGIN>
009:<T,, A—P,,, 120, 130>
010:<T, COMMIT>

14:<T., B-P,,, 200, 400>

?

CHECKPOINT

0 .
E’ ATT={T,,T;},

DPT={P,,,P;3}>

45

Slightly better checkpoints

At the first checkpoint, assuming P, was flushed, T,
is still running and there is only one dirty page (P,,)

At the second checkpoint, assuming P,, was flushed,

T, and T, are active and the dirty pages are (P,,, P3;)

This still is not ideal because the DBMS must stall
txns during checkpoint ...

001:<T, BEGIN>
002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END >
007:<CHECKPOINT

?

?JATT={T,},

DPT={P,,}>

008:<T, BEGIN>
009:<T,, A—P,,, 120, 130>
010:<T, COMMIT>
011:<T,, BoP,,, 200, 400>
012:<CHECKPOINT

?

2ATT={T,,T,}, «

DPT={P,,,P;,}>

45

Fuzzy checkpoints

A fuzzy checkpoint is where the DBMS follows active txns to continue to run while the
system writes the log records for checkpoint

* No attempt to force dirty pages to disk

New log records to track checkpoint boundaries:
e CHECKPOINT-BEGIN: Indicates the start of checkpoint
e CHECKPOINT-END: Contains ATT + DPT

46

Fuzzy checkpoints - ~

001:<T, BEGIN>

002:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
. 004:<T, COMMIT>
checkpoint starts 005:<T,, C—P,,, 100, 120>
006:<T, TXN-END>

007:<CHECKPOINT-
BEGIN>

Assume the DBMS flushes P, before the first

Any txn that begins after the checkpoint starts is

excluded from the ATT in the CHECKPOINT-END 008:<T, BEGIN>
record 009:<T,, A—P,,, 120, 130>
010:<CHECKPOINT-END
? ATT:{TZ},

The LSN of the CHECKPOINT-BEGIN record is _
| he MasterRecord when | | IDPT={P;,} >
written to the MasterRecord when it completes 011:<T, COMMIT>

012:<T,, B-P,,, 200, 400>

013:<CHECKPOINT-
BEGIN>
014:<T,, B-P,,, 10, 12>

_015-<CHECKPOINT-END~ /

Fuzzy checkpoints - ~

001:<T, BEGIN>

002:<T, BEGIN>

003:<T,, A—~P,,, 100, 120>
004:<T, COMMIT>

Assume the DBMS flushes P, before the first

checkpoint starts 005:<T,, C—P,,, 100, 120>
»006:<T1 TXN-END>
Any txn that begins after the checkpoint starts is gg&fﬁ:lECKPOINT'
excluded from the ATT in the CHECKPOINT-END 008:<T, BEGIN>
record 009:<T,, A—P,,, 120, 130>
010:<CHECKPOINT-END
?JATT={T,},

The LSN of the CHECKPOINT-BEGIN record is _
| he MasterRecord when | | IDPT={P;,} >
written to the MasterRecord when it completes 011:<T, COMMIT>

012:<T,, B-P,,, 200, 400>

013:<CHECKPOINT-
BEGIN>
014:<T,, B-P,,, 10, 12>

_015-<CHECKPOINT-END~ /

Fuzzy checkpoints

Assume the DBMS flushes P, before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

4)
001:<T, BEGIN>

002:<T, BEGIN>
003:<T,, A—~P,,, 100, 120>
004:<T, COMMIT>
005:<T,, C—P,,, 100, 120>
006:<T, TXN-END>

007:<CHECKPOINT-
BEGIN>

»008:<T3 BEGIN>

009:<T,, A—P,,, 120, 130>
010:<CHECKPOINT-END
2] ATT=(T,},
?]DPT={P,,} >

011:<T, COMMIT>

012:<T,, B-P,,, 200, 400>

013:<CHECKPOINT-
BEGIN>
014:<T,, B-P,,, 10, 12>

_015-<CHECKPOINT-END~ /

47

Fuzzy checkpoints - ~

I 001:<T, BEGIN>

02:<T, BEGIN>

003:<T,, A—P,,, 100, 120>
. 004:<T, COMMIT>
checkpoint starts 005:<T,, C—P,,, 100, 120>
006:<T, TXN-END>

Any txn that begins after the checkpoint starts is gg&fﬁ:'ECKPOWT'

excluded from the ATT in the CHECKPOINT-END 008:<T, BEGIN>

record 009:22, A—>P11,l120, 130>
010: NT-END

The LSN of the CHECKPOINT-BEGIN record is : S|T=>Tr=={{7=2}’}>
written to the MasterRecord when it completes 011:<T, COMIZ\?IIT>

012:<T,, B-P,,, 200, 400>

013:<CHECKPOINT-
BEGIN>
014:<T,, B-P,,, 10, 12>

_015-<CHECKPOINT-END~ /

Assume the DBMS flushes P, before the first

Fuzzy checkpoints - ~

001:<T, BEGIN>
002:<T, BEGIN>

Assume the DBMS flushes P, before the first 003E:$1,é&\)llpl\1ll1l,1‘1>00, 120>
I 1
checkpoint starts #{rz, CP,, 100, 120>

006:<T, TXN-END>

Any txn that begins after the checkpoint starts is gg&fﬁ:'ECKPOWT'

excluded from the ATT in the CHECKPOINT-END 008:<T, BEGIN>
record 009:<T,, A—P,,, 120, 130>

010:<|inHTE_C_(+_KP}E]\IT-END
? ={T,},

The LSN of the CHECKPOINT-BEGIN record is _
| h d when | | IDPT={P,,} >
written to the MasterRecord when it completes 011:<T, COMMIT>

012:<T,, B-P,,, 200, 400>

013:<CHECKPOINT-
BEGIN>
014:<T,, B-P,,, 10, 12>

_015-<CHECKPOINT-END~ /

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Start of last
checkpoint

Undo: Reverse effects of failed txns

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Start of last
checkpoint

Undo: Reverse effects of failed txns

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Start of last
checkpoint

Undo: Reverse effects of failed txns

CRASH! @ R

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

Smallest
recLSN in DPT

after Analysis

Start of last
checkpoint

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

Smallest
recLSN in DPT |—

after Analysis

Start of last
checkpoint

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

Smallest
recLSN in DPT |—

after Analysis

Start of last
checkpoint

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

WAL

Oldest log
record of txn

active at crash

Smallest
recLSN in DPT |—

after Analysis

Start of last
checkpoint

CRASH! @

llllllllllllllllllllllllllllllll

ARIES: recovery phase overview

llllllllllllllllllllllllllllllll

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns

WAL
Oldest log
record of txn } """
active at crash

Smallest
recLSN in DPT |—

after Analysis

Start of last
checkpoint

CRASH! @

llllllllllllllllllllllllllllllll

Analysis phase

Scan the log forward from last successful checkpoint
e |f the DBMS finds a TXN-END record, remove its corresponding txn from ATT
All other records:
e |[f txn notin ATT, add it with status undo
® On commit, change txn status to COMMIT
For update log records
e If page P notin DPT, add P to DPT, set its recLSN=LSN
At the end of the phase:
e ATT identifies which txns were active at the time of crash

e DPT identifies which dirty pages might have made it to disk

49

Analysis phase

-

WAL

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,;, A—P,,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

LSN
010
020
030
040
050

ATT

DPT

50

Analysis phase

-

WAL

\—cRASH!

B 010:<CHECKPOINT-

BEGIN>

020:<T,;, A—P,,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

ATT

DPT

50

Analysis phase

-

WAL

=

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,;, A—P,,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

LSN
010

m) 020

030
040
050

ATT

DPT

50

Analysis phase

-

WAL

=

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,,, A—P.,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

LSN
010

m) 020

030
040
050

‘ (Txnld, Status) I

(Toe/V)

50

Analysis phase

4 VuAl)

010:<CHE Modify A in page P33_]

BEGIN>

=

020:<T,,, ASP,,, 10, 15>

030:<CHECKPOINT-END
ATT={T,, o},
DPT={P}>

040:<T,, COMMIT>

050:<T,, TXN-END> V
\cras /

L1l
i

LSN
010
020
030
040
050

ATT

(Toe/V)

DPT

50

Analysis phase
f PMI \

010:<CHE Modify A in page P33_]

BEGIN>

=

020:<T,,, ASP,,, 10, 15>

030:<CHECKPOINT-END
ATT={T,, o},
DPT={P}>

040:<T,, COMMIT>

050:<T,, TXN-END> 7
\cras /

L1l
i

010

m) 020
030
040

050

(Toe/V)

(Pageld, RecLSN)

(P55,020)

50

Analysis phase

-

WAL

=

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,;, A—P,,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

LSN
010

m) 020

030
040
050

ATT

(Toe/V)

DPT

(P55,020)

50

Analysis phase

-

WAL

=

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,;, A—P,,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

ATT

(Toe/V)
(Toe V), (Toz,U)

DPT

(P55,020)
(P55,020), (P,,,008)

50

Analysis phase

-

WAL

=

010:<CHECKPOINT-
BEGIN>

020:<T,,, A—P.,, 10, 15>

030:<CHECKPOINT-END
ATT={T,, o),
DPT={P}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

\CRAS

i

ATT DPT

(Toe, V) (P55,020)

(T%-,U), (T97;U) (P33;020)1 (P201008)
(T96;C); (T97;U) (P331020); (PZO,OOS)

50

Analysis phase

-

WAL

=)

\—cRASH!

010:<CHECKPOINT-
BEGIN>

020:<T,,, A—P.,, 10, 15>

030:<CHECKPOINT-END

ATT={Ty4,T47},
DPT={P,}>

040:<T,, COMMIT>

050:<T,, TXN-END>

7

ATT

(Toe/V)
(Toe V), (Toz,U)
(Toe,C), (Ty7,U)
(Tg7,U)

DPT

(P55,020)

(P55,020), (P,,,008)
(P55,020), (P,,,008)
(P55,020), (P,,,008)

50

Redo phase

e Goal: Repeat history to reconstruct the DB state at the moment of crash
— Reapply all updates (even aborted txns) and redo CLRs

e Scan forward from the log record containing smallest recLSN in DPT
e For each update log record or CLR with a given LSN, redo the actions unless:
® The affected page is not in DPT, or

e The affected page is in DPT, but that log record’s LSN is less than the page’s recLSN
® Log record’s LSN <= pageLSN

DBMS must fetch page from the disk to read page value

51

Redo phase

e Toredo an action
e Reapply logged update
e Set pagelLSN to log record’s LSN

e No additional logging, no forced flushes

e At the end of redo phase, write TXN-END log records for all txns with status C and

remove them from ATT

52

Undo phase

e Undo all txns that were active at the time of crash and therefore never commit

® These are all the txns with U status in the ATT after the Analysis phase

e Process them in reverse LSN order using the lastLSN to speed up traversal
® At each step, pick the largest lastLSN across all transactions in the ATT
® Traverse lastLSN in the same order, but in reverse, for how the updates happen
originally

e Write a CLR for every modification

53

Summary: ARIES

e Main ideas of ARIES:

WAL with Steal + No-force

Fuzzy checkpoints (snapshot of dirty page IDs)
Redo everything since the earliest dirty page
Undo txns that never commit

Write CLRs when undoing, to survive failures during restarts

e Log sequence numbers:

® LSNs identify log records; linked into backward chains per txn via prevLSN
® pagelSN allows comparison of data page and log records

54

