
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Logging and Recovery

• Logging
● Buffer pool policies

● WAL

● Logging schemes

• Recovery
● LSN

● Normal checkpoint and abort operations

● Checkpoint

● Recovery algorithm

Today’s focus

2

• Concurrency control protocol provides:
	 Atomicity + Consistency + Isolation

• We now need to ensure Atomicity + Durability

Until now …

3

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

4

Motivation

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

4

Motivation

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

A=
1

4

Motivation

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

A=
1

4

Motivation

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

A=
1A=2

4

Motivation

Schedule
T
1

TI
M

E

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

Page

4

Motivation

Crash recovery

5

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures

• Recovery algorithms have two parts:
● Actions during normal txn processing to ensure that the DBMS can recover from a

failure → preparing for the failure

● Actions after a failure to recover the database to a state that ensures atomicity,

consistency, and durability → handling the failure

Crash recovery

5

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures

• Recovery algorithms have two parts:
● Actions during normal txn processing to ensure that the DBMS can recover from a

failure → preparing for the failure

● Actions after a failure to recover the database to a state that ensures atomicity,

consistency, and durability → handling the failure

Observation

6

• DB’s primary storage location is on non-volatile storage, but this is slower than
volatile storage

• Use volatile memory for faster access:
● First copy target record into memory

● Perform the write operations in memory

● Write dirty records back to disk

• The DBMS needs to ensure the following:
● The changes for any txn are durable once the DBMS has committed it

● No partial changes are durable if the txn is aborted

Two key primitives: Undo vs. Redo

7

Undo: The process of removing the effects of an incomplete or aborted txn

Redo: The process of re-applying the effects of a committed txn for durability

→ This functionality depends on how DBMS manages the buffer pool

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

B=
8

A=
3

Buffer pool

8

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

B=
8

A=
3

Buffer pool

8

Steal policy

9

• A DBMS can evict dirty objects in the buffer pool modified by an uncommitted txn
• DBMS then overwrite the most recent committed version of that object in non-

volatile storage
→ Buffer manager steals the page from the uncommitted transaction

Steal: Eviction + overwriting is allowed
No-steal: Eviction + overwriting is not allowed

• Only committed data is written to non-volatile storage

Force policy

10

• Dictates whether a DBMS requires all updates made by a txn are written back to non-
volatile storage before a txn can commit

Force: Write-back is required
No-force: Write-back is not required

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

FORCE means that T2
changes must be written

to disk at this point.

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

NO-STEAL means that T1 changes
cannot be written to disk yet.

FORCE means that T2
changes must be written

to disk at this point.

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

NO-STEAL means that T1 changes
cannot be written to disk yet.

A=
1

B=
8 C=7

Co
py

FORCE means that T2
changes must be written

to disk at this point.

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

NO-STEAL means that T1 changes
cannot be written to disk yet.

B=
8

A=
1

B=
8 C=7

Co
py

FORCE means that T2
changes must be written

to disk at this point.

No-steal + force

11

Schedule
T
1

T
2

TI
M

E

Buffer Pool

A=
1

B=
9 C=7

A=
1

B=
9 C=7B=
8

BEGIN
R(A)
W(A)

 ⋮
ROLLBA
CK

BEGIN
R(B)
W(B)
COMMIT

A=
3

Now it’s trivial
to rollback T1

B=
8

No-steal + force

11

No-steal + force

12

This approach easiest to implement:
• Never have to undo changes of an aborted txn because the changes were not written

to disk
• Never have to redo changes of a committed txn because all the changes are

guaranteed to be written to disk at committee commit time

Issues with no-steal + force?

No-steal + force

13

This approach easiest to implement:
• Never have to undo changes of an aborted txn because the changes were not written

to disk
• Never have to redo changes of a committed txn because all the changes are

guaranteed to be written to disk at committee commit time

Issues with no-steal + force?
• High memory pressure: requires all pages to be buffered in memory until commit
• Slow commit: Force flushes all dirty pages at commit time, increasing latency
• Inefficient for concurrent updates: excessive I/O per commit for multiple txns

Write-ahead log (WAL)

14

• Maintains a log file separate from data files that contains the changes that txns make
to database
● Assume that the log is on stable storage

● Log contains necessary information to perform undo and redo actions to restore DB

• DBMS must write to disk the log file records that correspond to changes made to a
database object before it can flush that object to disk

Buffer pool policy: Steal + No-force

Buffer pool + WAL

15

YesNo
Steal

N
o

Ye
sFo

rc
e

Buffer pool + WAL

15

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

Buffer pool + WAL

15

Desired

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

Buffer pool + WAL

15

Desired

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

Buffer pool + WAL

15

Desired

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

No-Steal
Low throughput,

but works for
aborted txns

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

Buffer pool + WAL

15

Desired

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

No-Steal
Low throughput,

but works for
aborted txns

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

No-Force
Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to redo.

Buffer pool + WAL

15

Desired

Trivial

YesNo
Steal

N
o

Ye
sFo

rc
e

No-Steal
Low throughput,

but works for
aborted txns

Steal (flush an unpinned dirty page even if the updating txn is active)
Concern: A stolen+flushed page was modified by an uncommitted txn. T.
If T aborts, how is atomicity enforced?
Solution: Remember old value (logs). Use to undo.

Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

No-Force
Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to redo.

WAL protocol

16

• The DBMS keeps a dedicated region for txn’s log records in volatile storage (usually
backed by buffer pool)

• First write the log records wrt an updated page and then page itself in non-volatile
storage

• A txn is not considered committed until all its log records have been written to stable
storage

WAL protocol

17

• Write a <BEGIN> record to the log for each txn to mark its starting point

• Append a record every time a txn changes an object:
● Transaction ID

● Object ID

● Before value (undo)

● After value (redo)

• When a txn finishes, the DBMS appends a <COMMIT> record to the log
● Make sure that all log records are flushed before it returns an acknowledgement to

application

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

A=
1

B=
5 C=7

WAL example

18

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>

A=
1

B=
5 C=7

WAL example

18

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>

A=
1

B=
5 C=7

WAL example

18

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>

A=
1

B=
5 C=7

1
Befo
re

Afte
r

WAL example

18

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>

A=
1

B=
5 C=7

1

2

Befo
re

Afte
r

WAL example

18

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮ A=

1
B=
5 C=7

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮

B=
9

A=
1

B=
5 C=7

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮

B=
9

A=
1

B=
5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮

Txn result is now safe to
return to application.

B=
9

A=
1

B=
5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

A=
1

B=
5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮

B=
9

A=
1

B=
5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

A=
1

B=
5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL example

19

Schedule
T
1

TI
M

E

Buffer Pool

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

A=
1

B=
5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Everything we need to
restore T1 is in the log!

WAL example

19

WAL implementation

20

• Flushing the log buffer to disk every time a txn commits becomes a bottleneck

• The DBMS can use the group commit optimization to batch multiple log flushes
together to amortize overhead
● When the buffer is full, flush it to disk

● Or if there is a timeout (e.g., 5 ms)

Buffer pool policies

21

• Almost every DBMS uses No-force + steal

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

Runtime Performance
NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Recovery Performance

Buffer pool policies

21

• Almost every DBMS uses No-force + steal

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

Runtime Performance
NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Recovery Performance
Undo + Redo

Buffer pool policies

21

• Almost every DBMS uses No-force + steal

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

Runtime Performance
NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Recovery Performance
Undo + Redo

No Undo + No
Redo

Logging schemes

22

Physical logging
• Record the byte-level changes made to a specific page (e.g., git diff)

Logical logging
• Record the high-level operations executed by txns

● Example: update, delete, and insert queries

Physiological logging
• Physical-to-a-page, logical-within-a-page
• Hybrid: Byte-level changes for a single tuple identified by page ID + slot number
• Does not specify page organization

Physical vs. logical logging

23

• Logical logging requires less data written in each log record than physical logging

• Difficult to implement recovery with logical logging if concurrent txns running at lower
isolation levels
● Difficult to determine which parts of the database may have been modified by a query

before crash

● Recovery takes longer because DBMS re-executes every query in the log again

Summary: logging

24

• WAL is almost always the best approach to handle loss of volatile storage

• Use incremental updates (steal + no-force) with checkpoints

• On recovery: undo uncommitted txns + redo committed txns

Crash recovery

25

• Recovery algorithms are techniques to ensure database consistency, transaction
atomicity, and durability despite failures

• Recovery algorithms have two parts:
● Actions during normal txn processing to ensure that the DBMS can recover from a

failure → preparing for the failure

● Actions after a failure to recover the database to a state that ensures atomicity,

consistency, and durability → handling the failure

Algorithms for Recovery and
Isolation Exploitation Semantics

• Developed at IBM Research in early
1990s for the DB2 DBMS

• Not all systems implement ARIES exactly
as defined in this paper but they
follow it closely → canonical representation
of today’s DB recovery protocol

ARIES

26

https://dl.acm.org/citation.cfm?id=128770

Write-ahead logging:
• Flush WAL record(s) changes to disk before a database object is written to disk
• Must use Steal + No-force buffer pool policies

Repeating history during redo:
• On DBMS restart, retrace actions and restore DB to exact state before crash

Logging changes during undo:
• Record undo actions to log to ensure action is not repeated in the event of

repeated failures

ARIES: main ideas

27

• Logging
● Buffer pool policies

● WAL

● Logging schemes

• Recovery
● LSN

● Normal checkpoint and abort operations

● Checkpoint

● Recovery algorithm

Today’s focus

28

• Need to extend log record format to include additional info:

• Every log record includes a globally unique log sequence number (LSN)
● LSNs represent the physical order that txns make changes to the DB

• Various components in the system keep track of LSNs that pertain to them …

WAL records

29

Log sequence numbers (LSNs)

30

Name Location Definition
flushedLSN Memory Last LSN in log on disk

pageLSN pagex Newest update to pagex

recLSN DPT† Oldest update to pagex
since it was last flushed

lastLSN ATT* Latest record of txn Ti

MasterRecord Disk LSN of latest checkpoint

† DPT = Dirty Page Table * ATT = Active Transaction Table

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Disk

DRAM

WAL

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Disk

DRAM

WAL

pageLSNs

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Data
Page

pageLSN

Data
Page

pageLSN

Disk

DRAM

WAL

pageLSNs

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Data
Page

pageLSN

Data
Page

pageLSN

Disk

DRAM

WAL

pageLSNs

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Data
Page

pageLSN

Data
Page

pageLSN

Disk

DRAM

WAL

flushedLSNpageLSNs

LSN: Unique and monotonically increasing

Each data page contains a pageLSN
→The LSN of the most recent log record that
updated the page

Systems keep track of flushedLSN
→ the max LSN flushed so far

WAL: Before a pagex is written, pageLSNx <=

flushedLSN

WAL bookkeeping

31

WAL

LSNs

Data
Page

pageLSN

Data
Page

pageLSN

Disk

DRAM

WAL

flushedLSNpageLSNs

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Log Sequence Numbers Log Sequence Numbers

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

?
Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

?
Safe to evict because

pageLSN ≤ flushedLSN

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2?

Writing log records

32

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2? Not safe to evict because
pageLSN > flushedLSN

Writing log records

32

• All log records have an LSN

• Update the pageLSN every time a txn modifies a record in the page

• Update the flushedLSN in memory every time the DBMS writes the WAL buffer to
disk

Writing LOG records

33

• Each txn invokes a sequence of reads and writes, followed by a commit or rollback

• Assumptions made right now:
● All log records fit within a single page

● Disk writes are atomic

● Single-versions tuples with Strong Strict 2PL

● Steal + No-force buffer management with WAL

Normal execution

34

• When a txn commits, the DBMS writes a COMMIT record to a log and guarantees all
log records up to txn’s COMMIT record are flushed to disk
● Log flushes are sequential, synchronous writes to disk

● Many log records per log page

• When the commit succeeds, write a TXN-END record to log
● Indicates that no new log record for a txn will appear in the log ever again

● This does not need to be flushed immediately

Transaction commit

35

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

Transaction commit

36

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

Transaction commit

36

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

Transaction commit

36

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

flushedLSN = 015

Transaction commit

36

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

Transaction commit

36

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT
>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=9 B=5 C=2

pageLSN

A=9 B=5 C=2

Transaction commit

36

• Aborting a txn is a special case of the ARIES undo operation applied to only one txn

• Need to add another field to log records:
● prevLSN: The previous LSN for the txn

● This maintains a linked-list for each txn that makes it easy to walk through its records

Transaction abort

37

• Ensures that undo actions during recovery are logged and redoable
● Prevents the same undo if a crash happens again

• A CLR describes the actions taken to undo the actions of a previous update record

• It has all the fields of an updated log record plus the undoNextLSN pointer (i.e, the
next-to-be-undone LSN)

• CLRs are added to log records but the DBMS does not wait for them to be flushed
before notifying the application that the txn aborted

Compensation log records (CLR)

38

• First write an ABORT record to log for the txn
• Then analyze the txn’s updates in reverse order
• For each updated record:

● Write a CLR entry to the log

● Restore old value

• Lastly, write a TXN-END record and release locks

Note: CLRs never need to be undone

Abort algorithm

39

• Logging
● Buffer pool policies

● WAL

● Logging schemes

• Recovery
● LSN

● Normal checkpoint and abort operations

● Checkpoint

● Recovery algorithm

Today’s focus

40

WAL can grow infinite → need an approach to have faster recovery
• DBMS checkpoints WAL to truncate it
• Works by halting everything when DBMS takes a checkpoint to ensure a consistent

snapshot:
● Halt the start of any new txns

● Wait until all active txns finish executing

● Flushes dirty pages on disk

• Also known as non-fuzzy checkpoint
● Bad for runtime performance but makes recovery easy

Checkpoints

41

Pause modifying txns while the DBMS takes the checkpoint
● Flushes dirty pages on disk
● Prevent queries from acquiring write latch on table/index pages
● Don’t have to wait until all txns finish before taking the checkpoint

Record internal state as of the beginning of the checkpoint to handle partial updates

● Active Transaction Table (ATT)
● Dirty Page Table (DPT)

Slightly better checkpoints

42

One entry per currently active txn
• txnID: Unique txn identifier
• status: The current “mode” of the txn
• lastLSN: Most recent LSN created by the txn

Txn status codes:
• Running (R)
• Committing (C)
• Candidate for undo (U)

Active transaction table (ATT)

43

• Keep track of which pages in the buffer pool contain changes that have not been
flushed to disk

• One entry per dirty page in the buffer pool
● recLSN: The LSN of the log record that first caused the page to be dirty

Dirty page table (DPT)

44

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

At the first checkpoint, assuming P11 was flushed, T2
is still running and there is only one dirty page (P22)

At the second checkpoint, assuming P22 was flushed,
T2 and T3 are active and the dirty pages are (P11, P33)

This still is not ideal because the DBMS must stall
txns during checkpoint …

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

45

Slightly better checkpoints

45

A fuzzy checkpoint is where the DBMS follows active txns to continue to run while the
system writes the log records for checkpoint
• No attempt to force dirty pages to disk

New log records to track checkpoint boundaries:
• CHECKPOINT-BEGIN: Indicates the start of checkpoint
• CHECKPOINT-END: Contains ATT + DPT

Fuzzy checkpoints

46

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-
BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-
BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},

Assume the DBMS flushes P11 before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

Fuzzy checkpoints

47

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-
BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-
BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},

Assume the DBMS flushes P11 before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

Fuzzy checkpoints

47

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-
BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-
BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},

Assume the DBMS flushes P11 before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

Fuzzy checkpoints

47

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-
BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-
BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},

Assume the DBMS flushes P11 before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

Fuzzy checkpoints

47

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-
BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-
BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},

Assume the DBMS flushes P11 before the first
checkpoint starts

Any txn that begins after the checkpoint starts is
excluded from the ATT in the CHECKPOINT-END
record

The LSN of the CHECKPOINT-BEGIN record is
written to the MasterRecord when it completes

Fuzzy checkpoints

47

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

TI
M
E

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

TI
M
E

A
1

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

TI
M
E

A
1

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

TI
M
E

A
1

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

TI
M
E

A
1

R
2

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

Smallest
recLSN in DPT
after Analysis

TI
M
E

A
1

R
2

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

Smallest
recLSN in DPT
after Analysis

TI
M
E

A
1

R
2

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

Smallest
recLSN in DPT
after Analysis

TI
M
E

A
1

R
2

U
3

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

Oldest log
record of txn

active at crash

Smallest
recLSN in DPT
after Analysis

TI
M
E

A
1

R
2

U
3

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

Start from last BEGIN-CHECKPOINT found via
MasterRecord

Analysis: Figure out which txns committed or
failed since checkpoint

Redo: Repeat all actions

Undo: Reverse effects of failed txns
CRASH!

Oldest log
record of txn

active at crash

Smallest
recLSN in DPT
after Analysis

TI
M
E

A
1

R
2

U
3

Start of last
checkpoint

WAL

ARIES: recovery phase overview

48

• Scan the log forward from last successful checkpoint
● If the DBMS finds a TXN-END record, remove its corresponding txn from ATT

• All other records:
● If txn not in ATT, add it with status undo

● On commit, change txn status to COMMIT

• For update log records
● If page P not in DPT, add P to DPT, set its recLSN=LSN

• At the end of the phase:
● ATT identifies which txns were active at the time of crash

● DPT identifies which dirty pages might have made it to disk

Analysis phase

49

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

(TxnId, Status)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Modify A in page P33

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Modify A in page P33

(PageId, RecLSN)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

WAL
010:<CHECKPOINT-
BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮
CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Analysis phase

50

• Goal: Repeat history to reconstruct the DB state at the moment of crash
 → Reapply all updates (even aborted txns) and redo CLRs

• Scan forward from the log record containing smallest recLSN in DPT
• For each update log record or CLR with a given LSN, redo the actions unless:

● The affected page is not in DPT, or

● The affected page is in DPT, but that log record’s LSN is less than the page’s recLSN

● Log record’s LSN <= pageLSN

DBMS must fetch page from the disk to read page value

Redo phase

51

• To redo an action
● Reapply logged update

● Set pageLSN to log record’s LSN

● No additional logging, no forced flushes

• At the end of redo phase, write TXN-END log records for all txns with status C and
remove them from ATT

Redo phase

52

• Undo all txns that were active at the time of crash and therefore never commit
● These are all the txns with U status in the ATT after the Analysis phase

• Process them in reverse LSN order using the lastLSN to speed up traversal
● At each step, pick the largest lastLSN across all transactions in the ATT

● Traverse lastLSN in the same order, but in reverse, for how the updates happen

originally

• Write a CLR for every modification

Undo phase

53

• Main ideas of ARIES:
● WAL with Steal + No-force
● Fuzzy checkpoints (snapshot of dirty page IDs)
● Redo everything since the earliest dirty page
● Undo txns that never commit
● Write CLRs when undoing, to survive failures during restarts

• Log sequence numbers:
● LSNs identify log records; linked into backward chains per txn via prevLSN
● pageLSN allows comparison of data page and log records

Summary: ARIES

54

